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Pople has recently introduced the concept of a framework group to specify 
the full symmetry properties of a molecular structure. Furthermore,  Pople 
has developed powerful algorithms for the use of framework groups to 
generate all distinguishable skeletons with a given number of sites. This paper 
studies the systematics of chirality arising from different framework groups. 
In this connection framework groups can be classified into four different 
types: linear, planar, achiral, and chiral. Chiral framework groups lead to 
chiral systems for any ligand partition including that with all ligands 
equivalent. Linear framework groups are never chiral even for the ligand 
partition with all ligands different. Planar framework groups are also never 
chiral since all sites are in the same plane, which therefore remains a symmetry 
plane for any ligand partition. However,  the mirror symmetry of the molecular 
plane of a planar framework group can be destroyed by a process called 
polarization; this process can be viewed as the mathematical analogue of 
complexing a planar aromatic hydrocarbon to a transition metal. The chirality 
of four-, five-, and six-site framework groups is discussed in terms of the 
maximum symmetry ligand partitions resulting in removal of all of the 
symmetry elements corresponding to improper rotations Sn (including 
reflections $1 and inversions $2) from achiral and polarized planar framework 
groups. The Ruch-Sch6nhofer  group theoretical algorithms for the calcula- 
tion of chiral ligand partitions and pseudoscalar polynomials of lowest degree 
("chirality functions") are adapted for use with these framework groups. 
Other properties of framework groups relevant to a study of their chirality 
are also discussed: these include their transitivity (i.e. whether all sites are 
equivalent or not), their normality (i.e. whether proper  rotations correspond 
to even permutations and improper rotations correspond to odd permuta- 
tions), and the number of sites in their symmetry planes. 

Key words: Framework groups - Chirality functions - Pseudo scalar measure- 
ments - Symmetry - Chiral representations. 
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1. Introduction 

Many properties of interest to chemists (e.g., optical rotation and circular dichro- 
ism) are related to pseudoscalar measurements. Such measurements give real 
numbers which have the following two properties [2]: 

(1) They depend upon the measured object but not its orientation in space. 
(2) They have opposite signs for mirror images such as the two enantiomers of 
a chiral molecule. 

The interest in pseudoscalar measurements makes of chemical significance the 
geometrical and algebraic study of chirality with the following objectives: 

(1) The systematics of the molecular skeletons and ligand partitions leading to 
chiral systems, i.e. systems having non-superimposable mirror images and there- 
fore belonging to molecular point groups having no improper rotation symmetry 
elements [3] including mirror planes ($1 = o-) and inversion centers ($2 = i). 
(2) The determination of mathematical functions by which the magnitude and 
sign of a given pseudoscalar property (the dependent variable) can be calculated 
for a given skeleton using parameters which depend only upon the ligands located 
at specific sites on the skeleton (the independent variables). Such mathematical 
functions are called chirality functions. 

The development of the theory of chirality functions was pioneered by Ruch 
and Sch6nhofer [4, 5]. A general outline of the algebraic aspects of this theory 
has been presented by Ruch [2]. A more detailed summary of the mathematics 
underlying this theory has been presented by Mead [6]. The relative com- 
plexity of some of the mathematics has led to considerable confusion over 
certain specific issues (e.g., qualitative completeness [7-10] and hyperchirality 
[11-16]) which this paper will try to avoid as much as possible. 

The original objective of the work outlined in this paper was the systematic 
determination of the chiral ligand partitions for skeletons represented by coordi- 
nation polyhedra, whose topology [17] and symmetry [18] have been previously 
studied by the author. However, during the course of this work a publication 
by Pople [19] on framework groups suggested a considerably more elegant 
approach. His concept of framework groups provides a systematic and powerful 
method for generating all possible skeletons having a given number of sites and 
distinguishable symmetries. This paper thus presents for the first time detailed 
information on the chiral ligand partitions for all distinguishable skeletons 
having four, five, and six sites. In addition, sufficient information is presented 
on the. associated chirality functions of a specific type (pseudoscalar 
polynomials of lowest degree [2]) so that such functions can be determined 
with relative ease. 

2. Symmetry and Framework Groups 

Consider a molecule of the type MLn in which M is a metal or other central 
atom and the n ligands L may or may not be equivalent but cannot be chiral 
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[6]. Removal of the n ligands L from ML,  leads to what may be called the 
skeleton [11]. The symmetry of the skeleton is regarded as that of the framework 
group [19] based on the locations of the n ligands L. Furthermore, the ligand 
partition of a given molecule ML,  and the site partition of the underlying skeleton 
may be represented by symbols of the type (a~ l a b 2 . . ,  a~ ~) where ak and 
bk are small positive integers and am >am+l( /-<m - k ) .  In this symbol for the 
ligand partition there are bk sets of ak identical ligands. Thus a ligand partition 
(n) refers to an ML,  complex in which all n ligands L are equivalent. Similarly 
in this symbol for the site partition there are bk different sets of ak equivalent 
sites on the skeleton. Thus a site partition (n) refers to a skeleton in which all 
n sites are equivalent. Such a skeleton with all sites equivalent is called a transitive 
skeleton since its point group operates transitively [20] on the sites. A framework 
group which is not transitive is called intransitive. An intransitive framework 
group has more than one orbit, where an orbit is a set of sites interchanged 
among each other in some way by symmetry operations in the point group. The 
number of sites in an orbit is called the length of the orbit. 

This terminology can be illustrated by the trigonal bipyramidal complex 
MA2BCD in which the ligand partition is (213) and the site partition is (32). In 
the latter symbol the "3"  refers to the three equivalent equatorial sites of the 
trigonal bipyramid and the "2"  refers to the two equivalent apical sites of the 
trigonal bipyramid. 

The framework groups of Pople [19] specify the symmetry of bodies containing 
a finite number of particles. Framework groups can be described using a general 
notation [19] specifying the underlying point group in Schoenflies notation [2] 
followed by an indication of the location of each of the particles in terms of 
subspaces relating to the symmetry elements of the underlying point group. The 
subspaces can be classified by their dimensionalities as follows: 

O-dimensional: a central point (e.g., center of inversion (i) or intersection of a 
rotation axis with another rotation axis or a perpendicular plane of symmetry) 
designated as O. 
1-dimensional: a rotation axis (C~) designated by C~ where n is the order of the 
rotation. 
2-dimensional: a reflection plane (or) designated by ~rh, o'~, or o-d depending upon its 
location in the point group. 

3-dimensional: the remaining part of full space external to any of the symmetry 
elements of the point group - designated as X. 
The location of any given particle in the framework group (designated as L in 
this paper) is specified in terms of the subspace of the lowest possible dimensional- 
ity. This lead to the preference order 0 > C. > o- > X. 

Using this terminology the framework group of the trigonal bipyramid can be 
expressed a s  D3h[C3(L2), 3C2(L)] where the C3(L2) means that the two axial 
sites are located on the C3 axis and the 3C2(L) means that each of the three 
equatorial sites are located on a different 6"2 axis. Pople [19] lists all of the 
framework groups with up to six sites using this designation. 
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The symmetry operations in a framework group with n points can be regarded 
as permutations of the n points. There are a total of n! different possible 
permutations of the n points which form a group called the symmetric group 
generally [21] written as S, but written here [18] as Pn to avoid confusion with 
the Sn symbol for improper rotation axes [3]. In the case of the regular tetrahe- 
dron, framework group Ta[4Cs(L)], the symmetry group is isomorphic to the 
corresponding symmetric group P4. However,  all of the other framework groups 
having n sites where n --- 4 do not contain the full n ! symmetries of the corre- 
sponding symmetric groups P ,  but contain symmetries corresponding to a sub- 
group of Pn (never a normal subgroup for n -> 5 because the alternating groups 
An (n - 5 )  are all simple [21]). Naturally the order (number of elements) in a 
framework group with n sites must be a factor of n ! in accord with a fundamental 
theorem of group theory [21]. 

Framework groups may also be characterized by their cycle indices [22] Z ( G )  
which are polynomials of the form 

i=c 

z ( G )  = E . . . . . .  (1) aix1 ~lX2 ' 2 .  . . X n  ~". 
i = 1  

In this equation the terms and indices have the following significance: 

n = number of sites in the framework group. 
c = number of terms in the cycle index. If the framework group is isomorphic 

to Pn then each term corresponds to a conjugacy class. 
ai = number of elements of the framework group with the indicated cycle 

structure. 
Xk = dummy variable referring to cycles of length k. 
cik = exponent  indicating the number of cycles of length k in term i. 

An individual symmetry element of a framework group may also be represented 
by its cycle partition, which is a symbol of the type (k c~ [k - 1]ck-l[k - 2] ~k-2. �9 �9 1 ~1) 
where ck refers to the number of cycles of length k and all non-existent cycle 
lengths are omitted from the symbol. In any cycle partition for symmetry 
operations in a framework group having n sites, the following equation will 
hold: 

i=k 

Y. ict = n. (2) 
i = 1  

Cycle partitions have a similar general appearance to the ligand partitions and 
site partitions outlined above. For example, the 6"3 rotations in the trigonal 
bipyramid D3h [C3(L2), 3C2(L)] have the cycle partition (312). 

The parity of a permutation or symmetry element expressed by a given term of 
the cycle index or by a cycle partition is odd or even depending upon whether 
the total number of cycles of even length is odd or even, respectively. This relates 
to the parity of the number of two-site transpositions [23] in the permutation 



Chirality and Framework Groups 107 

in question. Any permutation group contains either only even permutations or 
equal numbers of even and odd permutations. 

A system which contains no improper rotation axes S~(n >-1) in its symmetry 
group is defined as chiral. Systems containing one or more improper rotation 
axes are thus achiral. In this context the improper rotation axes $1 and $2 
correspond to a reflection plane o" and an inversion center i, respectively. 
Furthermore,  a framework group in which a symmetry element is odd if and 
only if it corresponds to an improper rotation axis Sn ( n -  1) may be called 
normal; if this is not the case the framework group may be called abnormal. 

All achiral framework groups with six or fewer sites other than those having the 
Ci point group contain one or more reflection planes or. These reflection planes 
can be classified into two types: separating planes and non-separating planes. 
A separating plane in a framework group having n sites contains exactly n - 2  
of these sites. Conversely, a reflection plane containing less than n -  2 sites in 
a framework group with n sites is a non-separating plane. Achiral framework 
groups with at least one reflection plane in which all reflection planes are 
separating planes have been called shoe-like framework groups by Ruch [2] 
since left-handed and right-handed enantiomers can be readily distinguished 
like left and right shoes. The trigonal bipyramid framework group 
D3h[C3(L2), 3C2(L)] is an example of a shoe-like framework group since all four 
reflection planes (Oh + 30"~) contain exactly 3 (=  5 - 2 )  sites. Framework groups 
which are not shoe-like have been called potato-like by Ruch [2] since although 
potatoes are chiral, left-handed and right-handed potatoes cannot be distin- 
guished. Shoe-like skeletons are also called "category a "  and potato-like 
skeletons are also called "category b"  by Ruch [2]. 

In most cases of chemical significance shoe-like framework groups are normal 
and potato-like framework groups are abnormal. Exceptions to this rule occur 
only when the number of sites of the framework group becomes large enough 
so that there are non-separating planes with odd numbers of pairs of sites outside 
the symmetry plane. The exceptional framework groups of this type with the 
least number of sites are the six-site Cs[X(L6)] in which all three pairs of sites 
are outside the single symmetry plane and framework groups having C7 axes 
(e.g. C7~[7cr~(L)] corresponding to the C7 ring sites in C7H7V(CO)3) in which 
there is only one site in each o-~ plane leaving three pairs of sites outside this 
plane. In general C4, 6"5, C6, $3, and $6 rotation axes lead to framework groups 
which are abnormal and potato-like. However,  there are also relatively simple 
abnormal potato-like framework groups lacking these rotation axes (e.g. the 
rectangular bipyramid DEh[C2(L2), o- (L4)]). 

The general objective of the work outlined in this paper is the determination of 
how unsymmetrical the ligand partition on a framework group must be before 
all improper symmetry elements are destroyed to give a chiral system. For the 
purpose of this study framework groups can be classified into four types as follows: 

(1) Linear. Framework groups in which all sites are located in a straight line, 
i.e. in a one-dimensional subspace of three-dimensional space. 
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(2) Planar. Non-linear framework groups in which all sites are located in a flat 
plane, i.e. in a two-dimensional subspace of three-dimensional space. 
(3) Achiral. Non-planar framework groups in which the point group contains 
at least one improper rotation S,(n >- 1) (including $1---or and $2 = i). 
(4) Chiral. Non-planar framework groups in which the point group contains no 
improper rotations. Chiral framework groups are of no interest in this study 
since they lead to chiral systems for any ligand partition including the ligand 
partition with all ligands identical. Linear framework groups are also of no 
interest in this study but for the opposite reason: they can never be chiral even 
if all ligands are different. 

Achiral framework groups are the ones of greatest importance in this study since 
they can lead to either chiral or achiral systems by varying the ligand partitions. 
Within this context this paper explores the following questions: 

(1) For a given achiral framework group, what ligand partitions lead to chiral 
systems? 
(2) What are the properties of chirality functions for these chiral systems based 
on achiral framework groups? 

In planar framework groups all.sites are coplanar; the plane containing these 
sites can be called the major plane of a framework group. Any ligand partition 
of a planar framework group (even that with all ligands different) retains the 
major plane as a symmetry plane thereby never leading to a chiral system. Thus 
before a chiral system can be obtained from a planar framework group, the 
symmetry of the major plane must be destroyed by a process conveniently called 
polarization. 

Consider the major plane in a planar framework group as a bisector of three- 
dimensional space into two three-dimensional half-spaces. Furthermore, consider 
one half-space to be positive and the other half-space to be negative (i.e. polarize 
the system). Then the major plane is no longer a plane of symmetry. Furthermore, 
if the major plane is designated as Crh (which it generally is in the relevant 
symmetry point group), then polarization also destroys symmetry elements of 
the planar framework group of the type O'hCn derived by combining reflection 
through the major plane with any proper rotation. This leads to a point group 
of a polarized planar framework group that is half the size of the point group 
of the original planar framework group. 

The process of polarizing planar framework groups can lead to any of the 
following three results: 

(1) The polarized planar framework group contains no improper rotations and 
therefore is chiral (for any ligand partition). This case is not interesting in the 
context of this paper. 
(2) The polarized planar framework group is identical to a framework group 
found by Pople's procedure [19]. For example, polarization of the planar 
framework group D3h[O(L),3CE(L)] (trigonal planar+center) leads to 
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C3o[C3(L), 3o'o (L)] (trigonal pyramid) which is already on Pople's list [19]. This 
case also is not interesting. 
(3) The polarized planar framework group is not on Pople's list [19] because of 
Pople's "first elimination rule". For example, polarization of the planar 
framework group D4h[2C2(L2)] (planar square) leads to the polarized planar 
framework group Cao[2o'~(Lz)] not found on Pople's list [19]. This is the most 
important case and appears to occur when the planar framework group is 
transitive. 

The most important application of polarization is the conversion of a planar 
polygonal framework group Dnh [nC2(L)] into a framework group of the type 
Cno[�89 for even n or Cno [no.o(L)] for odd n. This is the mathematical 
analogue to the chemical process of symmetrically bonding (i.e., by an ~7 n- hapto 
bond) a planar aromatic hydrocarbon CnH, (3 -< n -< 8)  to  a transition metal. Thus 
whereas the benzene skeleton can never become chiral because of the molecular 
plane, complexing a Cr(CO)3 unit to benzene leads to a non-planar C6H6Cr(CO)3 
skeleton which can become ehiral with an appropriate ligand partition (i.e., 
substitution pattern) above a transitive framework group is one in which all sites 
are equivalent. Thus a transitive framework group with n sites has a site partition 
(n). In a transitive framework group with n sites any ligand partition other than 
the fully symmetrical ligand partition (n) (i.e., all ligands identical) will result 
in a reduction of the point group symmetry. In general, transitive framework 
groups have fewer chiral ligand partitions than intransitive framework groups 
with comparable numbers of sites. 

Only relatively few framework groups are transitive. Transitive framework 
groups having 3 to 7 sites are listed below in order of decreasing symmetry for 
a given number of sites. 

Three Sites 
(1) The planar equilateral triangle D3h[3C2(L)] and its polarization C3v[3o.~ (L)]. 

Four Sites 
(1) The regular tetrahedron Ta[4C3(L)]. 
(2) The planar square D4h[2C2(L2)] and its polarization C4v[2o.o (L2)]. 
(3) The planar rectangle D2h[o.(L4)] and its polarization C2v[X(L4)]. 
(4) The allene skeleton D2d[2O.d(L2)]. 

Five Sites 
(1) The planar pentagon Dsh[5C2(L)] and its polarization Csv[5o.~ (L)]. 

Six Sites 
(1) The regular octahedron Oh[3C4(L2)]. 
(2) The planar hexagon D6h[3C2(Z2)] and its polarization C6v[3O-v (L2)]. 
(3) The trigonal prism Dah[3C2(L2)] and permutationally equivalent trigonal 
antiprism O3d [30"d (L2)]. 
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Seven Sites 
(1) The regular heptagon D7h[7C2(L)] and its polarization C7~[7o'~(L)]. 
The following observations can be made concerning this list of transitive framework 
groups: 

(1) The order n of each C, rotation axis (n > 2) must be a factor of the number 
of sites. Therefore, transitive framework groups with a prime number p of sites 
require a point group having a Cp rotation axis. This means that the only transitive 
framework groups with a prime number of sites are the planar p-gons Doh [pC2 (L)] 
and their polarizations Cp~[p~r~(L)]. This is illustrated above by the transitive 
framework groups having 3, 5, and 7 sites. 
(2) The square, rectangle, their polarizations, and all transitive framework groups 
having 5, 6, and 7 sites are all potato-like. All of these potato-like transitive 
framework groups except for the regular heptagon and its polarization are 
abnormal. 

3. Ligand Partitions and Group Representation Theory 

Consider a fully symmetric group P,  containing n ! elements. This group contains 
exactly one conjugacy class [23] for each possible set of positive integers 

i=k 
ml, m2 . . . . .  rnk whose sum Y~g=l mg= n (Ref. [3]). Such a set of positive integers 
is called a partition of n. A given partition of n can be depicted by n boxes as 
indicated in Tables 1, 2, and 3 for all possible partitions of 4, 5, and 6, respectively. 
Such a collection of boxes is called a Young diagram. [23]. 

Table 1. Young diagrams and ligand partitions for four ligand sites 

Chirality 
Ligand Young Complex Ct&al i ty  ChiralJty polynomial 
partition diagram type order ( o ) index (u) degree (g) 

(4) ~ MA4 4 1 0 

(31) ~ MA3B 3 2 1 

(2 z ) ~ MA2 B2 2 2 2 

(212 ) ~ MA2 BC 2 3 3 

(14 ) ~ MABCD 1 4 6 

U 
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Table 2. Young diagrams and ligand partitions for five ligand sites 
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Ligand Young Complex Chirality Clfi.rality 
partition diagram type order (o) index (u) 

Cllirality 
polynomial 
degree (g) 

(s) I I I I I I MA, 

(41) ~ MA4B 

(32) ~ MA3B 2 

(312) ~ MA3BC 

(221) ~ MA2 Bz C 

(213 ) ~ MA 2 BCD 

(1 s ) ~ MABCDE 

5 1 0 

4 2 1 

3 2 2 

3 3 3 

2 3 4 

2 4 6 

1 5 10 

In any group there is a one-to-one correspondence between conjugacy classes 
and irreducible representations [3], as is readily apparent from inspection of 
character tables. Therefore, the Young diagrams containing n boxes correspond 
not only to conjugacy classes of the symmetric group it,, but also to the irreducible 
representations of P,. 

Young diagrams can also be used to depict ligand partitions, site partitions, and 
cycle partitions. Of these uses of Young diagrams, their use to depict ligand 
partitions is important in the study of chirality. In using Young diagrams to 
represent ligand partitions the rows represent identical ligands. The top row is 
always the longest row and the left column is always the longest column. 

Tables 1, 2, and 3 show the use of Young diagrams to depict all possible ligand 
partitions for skeletons with 4, 5, and 6 ligand sites, respectively. All Young 
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Table 3. Young diagrams and ligand partitions for six ligand sites 

R. B. King 

Ligand Young Complex Ckirality Cltirality 
partition diagram type order (o) index (u) 

Cltirality 
polynomial 
degree (g) 

(6) I 1 1 / 1 1 1  MA6 

1 1 I I I  I MAsB 
(Sl) I I  

(42) [ ~  MA4B2 

(32 ) [ ~  MA3 Ba 

(412 ) ~ MA4BC 

(321) ~ MA3B2C 

(23) ~ MAzBzC2 

(313) 7 MA3BCD 

(2 ~ 12 ) ~ MA2 B2 CD 

~[~  MA: BCDE (214) 

1 ~ ) ~ MABCDEF ( 

6 1 0 

5 2 1 

4 2 2 

3 2 3 

4 3 3 

3 3 4 

2 3 6 

3 4 6 

2 4 7 

2 5 10 

1 6 15 
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diagrams representing ligand partitions including those depicted in Tables 1, 2, 
and 3 can be classified by the following three parameters: 

(1) Order (o): This represents the maximum number of identical ligands in the 
ligand partition and is simply the length of the top row. 
(2) Index (i): This represents the number of different ligands in the ligand 
partitions and is simply the length of the left column. 
(3) Degree (g): This provides a basis for ordering Young diagrams and represents 
the minimum degree of the corresponding ligand-specific chirality polynomial. 
The degree of a Young diagram can be calculated by the following equation: 

k = o r d e r  
1 g = ~  Y. ck (c~- l ) .  (3) 

k = l  

In Eq. (3) ck represents the length of column k. 

Tables 1, 2, and 3 list the relevant Young diagrams in order of increasing degree. 
For Young diagrams with 6 or more boxes, there are cases where more than 
one Young diagram has the same degree. Thus both the (412 ) and (32 ) Young 
diagrams each of degree 3 may be regarded as the next lower Young diagram 
from the (321) Young diagram of degree 4 (see Table 3). In general Young 
diagrams with high degrees depict unsymmetrical ligand partitions of MLn (i.e. 
many of the n ligands L are different from each other) and Young diagrams 
with low degrees depict relatively symmetrical ligand partitions (i.e. all or most 
of the ligands L are identical). Thus the degree of a Young diagram may be 
viewed as a measure of the "asymmetry" of the corresponding ligand partition. 

In the study of chirality, minimum asymmetry ligand partitions leading to chiral 
systems based on an achiral framework group are especially significant. Such 
chiraI ligand partitions represent the minimum asymmetry ligand partition (i.e. 
that of lowest degree, g) necessary to destroy all Sn (n - 1) symmetry elements 
(reflection planes, inversion centers, and improper rotation axes) in an achiral 
framework group to give a chi'ral system: such achiral framework groups may 
have more than one chiral ligand partition. This is particularly true of intransitive 
framework groups in which the presence of non-equivalent sites creates several 
distinguishable routes for the destruction of all Sn symmetry elements. These 
ideas will be clarified by specific examples later in this paper. 

The following group theoretical algorithm has been demonstrated [4-6] to 
select among the irreducible representations of the symmetrical group Pn, those 
which have Young diagrams corresponding to chiral ligand partitions for a 
skeleton having point group G: 

(1) Initially the characters for the skeletal point group G subduced [4-6] by 
each irreducible representation Fr of Pn must be determined. These can be 
obtained from character tables of Pn by copying down the characters of each 
irreducible representation Fr for the operations of Pn which are also in G. In 
order to recognize which operation of Pn corresponds to a given operation of 
G, the cycle partition of the operation in G is determined and the characters of 
the unique operation in Pn with that cycle partition are used. 
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(2) The characters of the chiral representation F,  of G are determined simply 
by using +1 for the proper rotations (E, Cn3) and -1  for the improper rotations 
(~, i,S,). 
(3) Standard group theoretical methods are used to determine which representa- 
tions Fr of P, when restricted only to operations in G contain the chiral rep- 
resentation F,  of G. Note that representations which are irreducible in systems 
with full P, symmetry are no longer necessarily irreducible when the symmetry 
is reduced to G. 
(4) The Young diagrams corresponding to these irreducible representations of 
P. correspond to chiral ligand partitions for a skeleton with point G. This skeleton 
may be represented by one of the framework groups [19]. 

The following features of the above algorithm are of interest: 

(1) The chiral representation F,  of G has characters of -1  for the improper 
rotations S. (including S l - t r  and S2~-i) and +1 for the proper rotations C. 
(including C1---E). In a normal framework group the chiral representation has 
characters of +1 for the even site permutations and -1  for the odd site permuta- 
tions but such is no longer true for abnormal framework groups. Also in any 
symmetric group P. the irreducible representation (1") corresponding to all 
ligands different has characters of + 1 for the even permutations and -1  for the 
odd permutations. As a consequence of this a framework group with n sites will 
have (1 ") as a chiral ligand partition if and only if it is normal. 
(2) Character tables for P.(n >-5) required for this procedure are not found in 
the usual places [3] since they do not correspond to three-dimensional point 
groups. However, character tables of P,  up to n = 10 have been published 
[24, 25]. Mathematical methods are available [24] for determining the characters 
of any irreducible representations of any P. but these get rather messy rather 
quickly as n exceeds 8. 
(3) Reducing the symmetry of a framework group with n sites from G to a 
smaller (less symmetrical) point group H will have the following two general 
effects: 
(a) The number of irreducible representations Fr of P. containing the chiral 
representation F ,  will be larger when restricted to H than when restricted to 
G. If H is a normal [21] subgroup of G, every irreducible representation F, ot 
P.  which contains the chiral representation F,  when restricted to G will also 
contain F,  when restricted to H. 
(b) The degree of the lowest chiral ligand partition will be lower for H than for 
G. These effects relate to the obvious fact that a less symmetrical framework 
group requires fewer different ligands to become chiral. Thus the symmetry of 
the skeleton is inversely related to the chirality order o and directly related to 
the chirality index u. 

4. The Algebraic Form of Chirality Functions 

In this paper we will consider chirality functions of the type X(sl, $2 . . . . .  Sn) 

which are polynomials of the lowest degree in ligand-specific parameters s where 
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sk refers to the value of the parameter for the ligand located at site k in the 
framework group. For such functions to be useful the value of s must depend 
only upon the ligand, the framework group, and the pseudoscalar property but 
not on the site where the ligand is located. 

Also, of course, a valid chirality function must have equal magnitudes but 
opposite signs for the two members of an enantiomeric pair (i.e., mirror images). 

The algebraic form of these chirality polynomials depends only upon the 
framework group and the ligand partition. The degree of the polynomial is the 
same as the degree of the corresponding ligand partition. Normally the chirality 
polynomials are expressed as a product and/or sum of differences between pairs 
of ligand parameters s~,-s~' (a = small integer) since this depicts most clearly 
the effects of ligand non-equivalences on pseudoscalar properties. 

Before discussing the general group theoretical algorithm for deriving the lowest 
degree chirality polynomials for a given framework group and ligand partition, 
there are two special cases where the form of the chirality polynomial is very 
readily derived without using the full group theoretical algorithm. These corre- 
spond to the shoe-like framework groups and the intransitive framework groups. 
Use of these special rules when possible to determine chirality functions for 
shoe-like framework groups and intransitive framework groups reduces drasti- 
cally the complexity of the algebra and the frequency of cases where the 
considerably more complicated full theoretical algorithm must be used. 

(A) Shoe-like Framework Groups. Consider a shoe-like framework group with 
n sites and p planes of symmetry. Any given plane of symmetry of a shoe-like 
group is a separating plane and contains exactly n-2 sites. Consider one of these 
planes Pk and label the two sites outside this plane ak and bk. The symmetry 
operation represented by the separating plane Pk interchanges sites ak and bk 
but leaves all of the other sites unchanged. The chirality polynomial 
X(sl ,  s2 . . . . .  s~) is the product of the differences [2] 

k=p 

X ( s l ,  s2 . . . . .  sn) = I-[ (sak --Sbk). (4) 
k--1 

The following points are of interest concerning Eq. (4): 

(1) Sometimes for two different symmetry planes Pk and Pi, bk or bi may be the 
same site as ai. 
(2) From Eq. (4) it is readily apparent that for a shoe-like framework group 
the degree of the lowest degree chirality polynomial is equal to the number of 
symmetry planes. 
(3) For the regular tetrahedron Td[4C3(L)], which is a shoe-like framework 
group with 6 separating planes (6o-a) Eq. (4) gives the familiar chirality 
polynomial 

X{Td[4C3(L)]} = (s4-s3)(s4- S2) ($4 - -  S1)(S 3 -- S2)(S 3 --  S1)(S 2 -  S l ) .  (5 )  
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(B) Intransitive Framework Groups: Consider an intransitive framework group 
with n sites and q orbits. The chirality polynomial for each orbit ean be deter- 
mined separately using the procedure above if it is shoe-like or the general 
algorithm below if it is potato-like. Let Xk be the chirality polynomial for orbit 
k. Then the chirality polynomial for the intransitive framework group may be 
obtained from the following relationship: 

X(s l ,  s2 . . . . .  s,) = [-[ X g .  (6) 
k=O 

The chirality polynomial for an intransitive framework group is thus the product 
of the chirality polynomials of the individual orbits, where each orbit is considered 
as a smaller framework group. Frequently, the smaller framework groups of the 
individual orbits are shoe-like and therefore have chirality polynomials that can 
be readily determined from their separating planes by Eq. (4) without using 
the full group theoretical algorithm. Also orbits of length 1 (i.e. isolated points 
invariant under all symmetry operations such as central points) can be completely 
ignored in the calculation of chirality polynomials of intransitive framework 
groups. 

The rules for intransitive framework groups and many of these other concepts 
can be illustrated by the determination of the lowest degree chirality polynomial 
for the trigonal bipyramid D3h[C3(L2), 3C2(L)] which has site partition (32) 
corresponding to two orbits, one of length 3 (the equatorial sites, labelled 1,2, 
and 3) and the other of length 2 (the axial sites, labelled 4 and 5). The framework 
group of the equatorial sites is O3h [3 C2(L)] which can be polarized to C3v [3o'~ (L)], 
a shoe-like framework group whose chirality polynomial is 

ge = X { C3v [3O'v (L)]} = (s3 - sz)(s3 - s 1)(sz - s 1). (7) 

Similarly, the orbit corresponding to the 2 axial sites 4 and 5 has a single 
separating plane leading to the chirality polynomial 

Xa = ( s s -  s4). (8) 

The chirality polynomial of the trigonal bipyramid is the product of Xe and Xa, 
i.e., 

X{O3h[f3(L2),  3C2(L)]} = (ge) (Xa)  = ( s 3 - $ 2 ) ( $ 3 - s 1 ) ( s 2 - s 1 ) ( $ 5 - s 4 ) ,  (9) 

In this specific case, the chirality polynomial (Eq. (9)) can also be obtained 
by treating the whole trigonal bipyramid as a shoe-like framework group with 
4 separating planes (oh + 3o-~) and then using Eq. (4). 

(C) The Full Group Theoretical Algorithm. The special procedures outlined 
above for shoe-like framework groups and intransitive framework groups can 
be shown to be valid by the use of the full group theoretical algorithm outlined 
below. The full group theoretical algorithm is also necessary to determine the 
chirality polynomials for the following framework groups: 

(a) Transitive potato-like framework groups. 
(b) Intransitive framework groups having one or more potato-like orbits. 
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In addition the full group theoretical algorithm may be necessary for the determi- 
nation of the chirality polynomial for a framework group with a chiral ligand 
partition having a degree higher than that of the minimum degree chirality 
polynomial. Mechanical application of the full group theoretical algorithm for 
the attempted determination of a chirality polynomial for a framework group 
using a ligand partition which is not chiral will instead lead identically to zero. 
Thus the group theoretical method outlined in the previous section for the 
determination of the chiral ligand partitions for a given framework group is a 
useful prerequisite to the determination of the algebraic form of chirality poly- 
nomials. 

The full group theoretical algorithm for the determination of the lowest degree 
chirality polynomials in ligand-specific parameters Sk corresponding to a given 
framework group and ligand partition is based on a procedure first developed 
by Ruch and Sch6nhofer [4, 5] and also discussed by Mead [6]. This algorithm 
can be outlined as follows (keeping non-essential mathematical details to a 
minimum): 

(1) Label the boxes in the Young diagram for the ligand partition of interest 
with the indices of the sites corresponding to the particular chiral species of 
interest with that ligand partition. These labels correspond to the indices k of 
the parameters Sk. 
(2) Determine from the columns of the labelled Young diagram the monomial 
arising from the following double product: 

e = o r d e r  f=i--1 

l-I I I  s{ ,  t =M(s1, S2 . . . . .  Sn). (10) 
e = l  f = O  

In Eq. (10) the following should be noted: 

(a) The product over e contains one factor for each column of the Young 
diagram. The variable e corresponds to the position of the column relative to 
the left column (e = 1). 
(b) The product over f contains one factor for each box in the Young diagram 
in column e except for the bottom box where f = 0 and hence s~e~ = 1 regardless 
of the value of ker If column e has only one box in it then this product is unity 
for that column and therefore does not contribute to the monomial in Eq. (10). 
The variable f corresponds to the position of the box relative to the bottom box 
of the column e. In the bottom box f = 0. 
(c) The variable ke~ refers to the index entered in the Young diagram box 
corresponding to column e and row f. 
(3) Apply each of the symmetry operations of the point group to the monomial 
M ( s l ,  s2 . . . . .  s , )  obtained from Eq. (10). This process can be represented 
schematically by 

g * M ( s l ,  s2 . . . . .  sn) (11) 

where g refers to a symmetry operation in the point group G and the star "*" 
means that the indices 1, 2 . . . . .  n are permuted by the symmetry operation g. 
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A similar notation to that in Eq. (11) has been used by Dugundji, Marquarding, 
and Ugi [11]. 
(4) The chirality polynomial can be expressed by the following equation: 

X ( s l ,  s2 . . . . .  s,) = Y, (-1) '[g * M ( s l ,  s2 . . . . .  s,)] . (12) 
g ~ G  

In Eq. (12), t is 2 for proper rotations Cm (including C1 -=E) and 1 for improper 
rotations 8,1 (including Sl--o- and $2-= i). This leads to a plus sign in front of 
the terms corresponding to proper rotations and a minus sign in front of the 
terms corresponding to improper rotations. The summation is taken over all of 
the operations g in the point group G. 
(5) After obtaining the chirality polynomial X ( s l ,  S2 . . . . .  Sn) from Eq. (12), 
further somewhat creative algebra may be needed to obtain the chirality function 
as a product and/or sum of differences between pairs of ligand parameters 
s'~-s'~. Sometimes it is useful to add zero to the result of Eq. (12) in the 
form of vanishing sums of the following type where K is a constant and a is a 
small integer exponent: 

k=n 

K E s~ , - s '~ .  (13) 
k = l  

Such addition of zero may be followed by factoring into powers of the type 
(s~, - s ~ )  b where b is a small integer. 

The full group theoretical algorithm may be illustrated by the determination of 
the chirality function of the lowest degree chiral ligand partition (312) for the 
five-site framework group C5~ [5o-~ (L)] arising from polarization of the framework 
group Dsh[5C2(L)] .  The framework group Csv[5o'~ (L)] can correspond to ring 
substitution sites in CsHsMn(CO)3 derivatives. This case is also instructive since 
it provides the first example of metacycl ic  groups [26] arising in a system of 
chemical significance. 

The only ligand partitions which are chiral in Csv[5o-~(L)] are 2(312) in which 
the coefficient 2 arises from the different chiral species la  and lb with the 
corresponding labelled Young diagrams Y(la) and Y(lb). The detailed calcula- 
tions of the chirality polynomial will be illustrated for the chirality polynomial 

A A 

la Y(la) lb Y(lb) 

corresponding to la, namely X l a ( s l ,  s2 . . . . .  ss). Thus application of Eq. (10) 
to Y(la) gives the monomial 

2 
M l a ( s l ,  s2 . . . . .  ss) = S4S x . (14) 

Application of Eq. (12) to the monomial in Eq. (14) using the 10 symmetry 
operations of Cs~ (i.e. E + 2Cs + 2Cs 2 + 5o-~) and putting minus signs (i.e. (-1) 1 = 
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-1)  before the terms corresponding to the 5O'v gives 

X l a ( s l ,  s2, ss)  = s4(s21 2 2 . . . .  - s ~ ) + s ~ ( s ~ - s ~ )  

+ s l ( s ~  2 2 --S4) "[- S2(S 4 - -  S 2 ) "[- S 3 ( S  2 - -  S21) (15) 

Now add zero in the form of Eq. (13) where K = I, n = 5, and a = 3. Rearranging 
the terms then gives 

3 X 1 ~  ( s~ ,  s 2  . . . . .  s s )  = ( s 4 -  s 1) 3 + ( s s  - s2 )  3 + ( s l  - s 3 )  3 + ( s2  - s 4 )  3 + (s~  - s s )  ~ . 

(16) 

These results and an analogous result for Xlb(S~,S'2, . . . .  s~) were already 
obtained by Ruch and Sch6nhofer [5]. A qualitatively complete [5, 6] chirality 
function X o c  for the framework group C5~[5o'~ (L)] is the sum 

: �9 , + X l b ( S 1 ,  S 2 ,  X o c  XI~(s l ,  s2,. . ss) ' ' . . . .  s'5) (17) 

in which the ligand parameters Sl, s2 . . . . .  s5 for Xla and st, s~ . . . . .  s~ for Xlb 
are not necessarily the same. The concept of qualitative completeness will not 
be discussed further in this paper since it is already treated extensively in earlier 
papers [2, 5]. 

The C5. symmetry group of the C5~[5o', (L)] framework group has 10 symmetry 
operations as noted above. There is also a larger permutation group with 20 
operations which consists of those operations which convert configuration la  
into either an equivalent configuration (a symmetry operation) or a configuration 
equivalent to configuration lb. Groups of this type are metacyclic groups [26] 
and may be designated as Mp where p -> 5 is a prime. The metacyclic groups are 
significant in group theory [26] since they are the largest soluble groups permuting 
p objects (p is a prime). The cycle index (Eq. (1)) of 345 has the following form: 

Z ( M s )  = x 5 + 4x5 + 5x lx  2 + 10xlx4. (18) 

Note that Ms is not isomorphic to the point group Dsh even though both groups 
have 20 elements. Metacyclic groups Mp with [ p ( p -  1)]/2 elements arise 
naturally in the study of chirality in Cp~[p~r~ (L)] framework groups (p = prime) 
obtained by polarization of the planar framework groups Dph[pCz(L)].  The 
metacyclic groups of potential chemical significance are Ms (e.g. the 
CsHsMn(CO)3 skeleton) with 20 elements and M7 (e.g. the CvH7V(CO)3 
skeleton) with 42 elements. 

The following are the lowest degree chirality polynomials for some other potato- 
like transitive framework groups which are particularly significant in exemplifying 
the minimum number of sites necessary to define the indicated symmetry 
element: 

(1) C4 axis: The chirality polynomial for the (212) ligand partition (g = 3) of the 
framework group C4o[2cro (L2)] (polarized planar square) is 

X ( s l ,  s2, s3, s4) = (s2- Sl)(S4-s3)[(sl-s3) + (s2- s4)]. (19) 
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The chirality polynomial for the lowest degree chiral representation (31) with 
g = 1 of the polarized planar rectangle (i.e., the framework group C2~[X(L4)]) 
consists of the final factor of Eq. (19) taken alone, i.e. 

X(S1, $2, $3, $4) = ( S 1 - - $ 3 )  + ( $ 2 - - S 4 ) .  ( 2 0 )  

This corresponds to the "quadrant rule" used to estimate the optical activity of 
complex organic molecules with this particular symmetry [2, 27, 28]. 
(2) C5 axis. See Eq. (16). 
(3) S3 or S6 axis. The chirality polynomial for the (42) ligand partition (g = 2) 
of the framework group O3h[3C2(t2)] for S3 (trigonal prism) or the permuta- 
tionally equivalent D3d[30"d (L2)] for S6 (trigonal antiprism) is 

X (Sl, s2 . . . . .  s6)  = ( $6 -$5 ) ( s 3 -S l ) -  ($6-$4)($3-82) �9 ( 2 1 )  

(4) C7 axis. The chirality polynomial for the (512) ligand partition (g =3)  of 
the framework group CT~[Ttr~ (L)] (polarized planar heptagon) is 

X(S1, $2 . . . . .  S7) = (S1 --  S2) 3 -[- (S2 -- $3) 3 "[- (S3 --  $4) 3 

"[- ($4 --  $5) 3 -]- (S5 -- $6) 3 "4- ($6 --  ST) 3 At- ($7 --  $1) 3 �9 ( 2 2 )  

5. Four-Site Framework Groups (Table 4) 

The transitive shoe-like four-site framework groups are the regular tetrahedron 
Ta[4C3(L)] and the allene skeleton D2a[2o'a(L2)] formed by removal of the 
three-fold symmetry from the regular tetrahedron. Tetrahedral species are well- 
known to be chiral if and only if all four ligands are non-equivalent in a species 
of the type MABCD. Thus the corresponding ligand partition (14) is the only 

Table 4. Chiral representations for achiral four-site framework groups 

Site Chiral ligand 
Framework group a partition Description partitions a 

Ta[4C3(L)] (4) regular tetrahedron (14) 
D4h[2C2(Lz)]~C4v[2tr~,(L2)] (4) square planar (212) * 
D3h[O(L), 3C3(L)] (31) trigonal planar+center  
Ca~ [Ca (L), 3~r~ (L)] (31) trigonal pyramid (14) + (212) 
D2h[C2(L2), C~ (L2)] (22) planar rhombus 
D2h[tr(L4)]--)C2v[X(L4)] (4) planar rectangle (212)*+(31) * 
D2a[2tra (L2)] (4) allene skeleton (14) + (22 ) 
C2h[O" h (L4)] (22) planar parallelogram 
CEu [C2 (L2), tr~ (L2)] (22) planar 
C2v [o'v (L2), o'~ (L2)] (22) butterfly (14) + (212) + (22) 
C2~ [tr(L4)] (22) planar trapezoid 
Cs[tr(L4)] (14) planar trapezium 
Cs[tr(L2), X(L2)] (212) non-planar (14) + 2(212) + (22) + (31~ 

a The notation used is that given by Pople, J. A., J. Am. Chem. Soc. 102, 4615 (1980). Polarizations 
are represented by arrows and the chiral ligand partitions corresponding to polarized planar 
framework groups are starred. 
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chiral ligand partition for a regular tetrahedron. Distortion of Td[4Ca(L)] to 
D2d [20"d (L2)] also leads to chiral species MA2B2 (e.g. chiral allenes) which have 
the chiral ligand partitions (14) + (22). This has been previously discussed in detail 
in several places [6, 29]. 

The transitive potato-like four-site framework groups are the polarized square 
C4v[2o'~ (L2)] and the polarized rectangle C2~[X(L4)]. Chirality in the polarized 
square C4v [2o-~ (L2)] arises only from the (212) ligand partition corresponding to 
a species MA2BC with structure II. 

A B A A 

A ~ C  A B 

II llI 

Reduction of the symmetry from C4~[26% (L2)] (polarized square) to C2~ IX(L4)] 
(polarized rectangle) by distorting the Ca axis to only a C2 axis introduces 
chirality in the (31) ligand partition corresponding to a species MA3B with 
structure III. Note that in the potato-like framework groups C4v[2O'~(L2)] and 
C2~[X(L4)] unlike the shoe-like groups the fully unsymmetrical ligand partition 
(14) is not chiral since a less unsymmetrical ligand partition (i.e: one of lower 
degree), namely (212), is already sufficient to account for all of the phenomena 
depending upon chirality for these potato-like framework groups. 

The properties of the intransitive four-site framework groups with site partitions 
(22 ) are instructive. Planar groups of this type are the rhombus 
D2h[C2(L2),CP2(L2)], the parallelogram C2h[Orh(L4)], the framework group 
C2~[C2(L2),o'~(L2)], and the trapezoid C2~[ov(L4)]. Polarization of the 
parallelogram, the framework group C2v[C2(L2), o'~(L2)], and the trapezoid all 
lead to framework groups of C2 symmetry. Since these C2 framework groups 
have no improper rotation axes, they are chiral for all ligand partitions and 
therefore are not of interest in the context of this study. Polarization of the 
rhombus gives the achiral framework group C2~ [0-~ (L2), 0-" (L2)] which can also 
have the following origins: 

(1) A two-fold distortion of the allene skeleton D2d[20-~(L2)]. 
(2) A two-fold distortion of the polarized square C4~[20"~ (L2)]. 
(3) The automorphism group of the graph IV corresponding to "butterfly-like" 

<I> 
IV 

systems. The chiral ligand partitions of C2~ [o-~ (L2), o-'v (L2)] are (14) + (22) reflect- 
ing its origin from distortion of the aIlene skeleton and (212) reflecting its alternate 
origin from distortion of the polarized square. 

The only non-planar four-site framework group with a (31) site partition is the 
trigonal pyramid C3~[C3(L), 3o'~(L)] which arises by destruction of the $4 axis 
in the regular tetrahedron Td [4C3(L)]. The trigonal pyramid C~o [Ca(L), 3cr~ (L)] 
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51 te 

-3 ParHt;on 
T d [ 4C3(L)] ~ D2d [ 2ad(L2)] C 4 [ .2-av(L 2) ] (4/ 

2 2 

C3v [C3(L),3av(L) 1 (31) 

C2v [ ev(L2) , a'v(L2) ] C2v tX(L4) ] (22) 

C s [(r (k2), X(L2)] (2121 

Fig. 1. Relat ionships between the four-site f ramework groups. All f ramework groups with a given 
site partition are listed in the same row 

is chiral if and only if the three ligands in the basal site are non-equivalent: call 
them A, B, and C. The unique apical site in C3~ [C3(L), 3o-~ (L)] can either contain 
a ligand which is the same as one of the basal ligands (call the apical ligand A) 
or a ligand different from any of the basal ligands (call the apical ligand D). 
Thus the two chiral ligand partitions of the trigonal pyramid C3~[C3(L), 3o'~ (L)] 
are (14) and (212) corresponding to species of the types MABCD (D in the 
apical position) and MA2BC (A in the apical position), respectively. 

The remaining non-planar achiral four-site framework group is Cs [or (L2), X(L2)] 
which has a (212) site partition. This framework group becomes chiral if and 
only if the two ligands outside the single plane of symmetry (i.e. X(L2)) are 
non-equivalent: call these two ligands A and B. The ligands in the single plane 
of symmetry can either be identical or different from each other and from ligands 
A and B. This leads to five chiral ligand partitions (14) + (212) + (212) + (22) + (31) 
corresponding to species Cs[cr(CD), X(AB)], Cs[tr(AC), X(AB)], 
Cs[o'(C2), X(AB)], C~[o'(AB), X(AB)], and Cs[o'(A2), X(AB)], respectively. 

The relationships between the non-planar and polarized planar achiral four-site 
framework groups are depicted in Fig. 1. In this figure all framework groups 
with a given site partition are listed in the same row. The numbers associated 
with each arrow indicates the index of the distortion represented by the arrow, 
i.e. Ia[/]nl where IGI is the number of elements in the point group of the 
framework group at the tail of the arrow and IHI is the number of elements in 
the point group of the framework group at the head of the arrow. 

6. Five-Site Framework Groups (Table 5) 

The only non-planar transitive five-site framework group is the polarized pen- 
tagon Csv [5o-v (L)] which has already been discussed in detail earlier in this paper 
and therefore will not be discussed further. 
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Several of the non-planar five-site framework groups have site partitions (41) 
or (221) and therefore arise from the four-site framework groups discussed above 
by addition of a unique fifth site. These include the following: 

(1) The centered regular tetrahedron Td[O(L), 4C3(L)] Which has a (41) site 
partition. The chiral ligand partitions are (15) and (213) corresponding to the 
chiral species Ta[O(E), 4Ca(ABCD )] and Ta[O(A ), 4C3(ABCD )], respectively. 
(2) The square pyramid Cav[C4(L), 2o'v (L2)] which has a (41) site partition. The 
chiral ligand partitions are (213), (221), and (312) corresponding to the 
chiral species C4~[C4(D), 2o'~(A2BC)], C4~[C4(B), 2oo(A2BC)], and 
C4~ [C4(A), 20.~ (A 2BC)], respectively. Note that for all three of these species the 
four ligands in the square base have the ligand partition (212) and the configur- 
ation in structure II corresponding to the single chiral ligand partition of the 
polarized planar square C4~ [20.~ (L2)]. 
(3) The framework group D2d[O(L), 2o-d(L2)] which has a (41) site partition 
and corresponds to an allene skeleton with an additional center point. The 
chiral ligand partitions are (15), (213), (221), and (32) corresponding to the 
chiral species D2,~[O(E),2o'd(ABCD)], D2d[O(A),2O'd(ABCD)], D2d 
[O (C), 2tra (A 2B2)], and D2d [O (A), 20.d (A2Bz)], respectively. 
(4) The rectangular pyramid C2~[C2(L), X(L4)] with a (41) site partition. The 
chiral ligand partitions are (213), (221), (312), (312), (32), and (41) corresponding 
to the chiral species C2~[C2(D), X(A2BC)], C2o[C2(B), X(AEBC)], 
Cz~[C2(A),X(A2BC)], CEv[C2(C), X(A3B)], C2o[C2(B), X(AaB)], and 
C2~[ C2(A ), X (A aB ) ], respectively. 
(5) The framework group C2v[C2(L), o'v(L2), o'rv(L2)] with a (221) site partition 
corresponding to a pyramid with a rhombus as its base. The seven chiral 
ligand partitions are (15), (213), (213), (221), (221), (312), and (32) corresponding 
to the chiral species C2v [C2(E), o-~ (CD), tr'~ (AB)], C2~ [C2(A), tr~ (CD), tr'v (AB)], 
Cz~[C2(D), o'~(AC), o'rv(AB)], Cz~[C2(B), o'o(AC), o"~(AB)], Czo[Cz(C), 
o'~(AB), o"(AB)], C2~[C2(A), o'o(AC), o"v(AB)], and C2~[C2(A), o'~(aB), 
o"~ (AB ) ], respectively. 

The remaining two non-planar achiral five-site framework groups with greater 
than C~ symmetry are the trigonal bipyramid D3h[C3(L2), 3C2(L)] with a (32) 
site partition and the framework group C3~[C3(L2), 3o-~(L)] with a (312) site 
partition. This latter framework group is derived from the trigonal bipyramid 
by removal of its O'h symmetry plane thereby making the two axial sites non- 
equivalent. The trigonal bipyramid has the chiral ligand partitions (15), (213), 
and (221) corresponding to the chiral species D3h[C3(DE), 3C2(ABC)], 
D3h[C3(AD), 3C2(ABC)], and Dah[C3(AB), 3C2(ABC)], respectively. The 
framework group C3~[C3(L2), 3try(L)] has these same three chiral ligand parti- 
tions plus the additional two chiral ligand partitions (213) and (312) which 
correspond to the chiral species C3,,[C3(D2), 3cr,~(ABC)] and C3,~[C3(A2), 
30"0 (ABC)], respectively. These framework groups have the following features 
of interest: 

(1) In all of the chiral representations of D3,[C3(L2),3Cz(L)] and 
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~ >  DSh[ 5C2(I-)1 

"I'd[ O (I.), 4C s (L)l Csv[ 5C2( k )1 

D3h[ C3(L2) ' 3C2(L) ] C4v[ C4(I. ), 2o v(L2)] 

C2v[ C2(L ), c' v (I-2), cr v'(L2)l C2v[ C:~(L), X(L4)I 
C3v[ C3(L2), 3 ov(L)] 

Fig. 2. Relationships between the five-site framework groups. Normal subgroup relationships are 
indicated by straight arrows; other subgroup relationships are indicated by wavy arrows 

C3o [C3(L2), 3O'v (L)], the ligand partition in the equatorial triangle is (13) in accord 
with the single chiral representation of the polarized triangle C3v[3o-~ (L)]. 
(2) The absence of a crh symmetry plane in C3o[C3(L2), 3cry(L)] allows chiral 
systems to have equivalent ligands in axial sites since the axial sites in 
C3~[C3(L2), 3o%(L)] are non-equivalent unlike those in D3h[f3(Z2), 3C2(L)]. 

Fig. 2 shows the relationships between these five-site framework groups. Straight 
arrows indicated normal subgroup relationships [21]. Note that the fully sym- 
metrical permutation group Ps does not correspond to a framework group in 
three dimensions but represents the symmetries of a four-dimensional simplex 
(analogue of the tetrahedron) [30]. The two-dimensional projection of the 
four-dimensional simplex is the non-planar [31] Ks graph (V). If the four- 
dimensional simplex is shoe-like like the two-and three-dimensional simplices 

@ 
V 

(the triangle and tetrahedron, respectively), then its sole chiral ligand partition 
is (15). The framework group Ta[O(L),4C3(L)] is the maximum symmetry 
distortion of the four-dimensional simplex which can be imbedded into three- 
dimensional space. Distortion of Ps to Td[O(L), 4C3(L)] adds the (213) chiral 
ligand representation. 

7. Six-site Framework Groups (Table 6) 

The most symmetrical six-site framework group is the regular octahedron 
Oh[3C4(t2)], whose point group contains 48 symmetry operations including C2, 
C3, and Ca axes [3]. Most of the six-site framework groups of chemical interest 
can be derived from the octahedron Oh[3C4(Z2)] through symmetry reduction 
(distortion [18]) by removal of various symmetry elements. The relationship 
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Oh[ 3C4(L~)] 

"~ r  ~j(6/ ~ ~ " ~ - ~ - - s  t:,4htC,/L~,2c~(t.~ll 
D3h[3Ov(L2)] ~ D3d[3ad(L~)] ~ "  / (421 I 

+2,  § 
C6~ (6) 

~ ~ ~-,) ,o.~,c;/,,),c;'ll~l 
"2 C4v[ C4(L21' 2%(L2)] / (23/ 

I 14,,) + 2 / 
; \ 02dcc, ,), 

x (42) 3v v 2 C2v[ C2(L2), X(L,)] ~+2 I "  / 

(3~1 (41 ') '~,/C 2v [ C, ~) ;;v (L,)~o .v (1.,)1 
(221 ~1 

Fig. 3. Subgroups of the six-site framework group Oh[3Cg(L2)] corresponding to the regular 
octahedron 

between various six-site framework groups derived from the octahedron is 
outlined in Fig. 3. 

Initial distortion of the octahedron Oh[3C4(L2)] can occur through destruction 
of either its Ca symmetry or its Ca symmetry. Destruction of the C4 symmetry 
of Oh[3C4(Z2)] retains transitivity to give initially either the trigonal prism 
D3h [3(rv (L2)1 o r  the trigonal antiprism D3d [30"d (Z2)],  these two framework groups 
correspond to identical permutation groups in which the horizontal symmetry 
plane (Oh) of Oah[30%(L2)] plays the same role as the inversion center (i) of 
D3u[3(ru(L2)]. Two distinguishable framework groups consisting of identical 
permutations (i.e. with the same cycle index as defined in Eq. (1) may be called 
isopermutational. Inspection of Pople's tables [19] reveals the following additional 
pairs of isopermutational framework groups: 

(1) The planar four-site framework groups C2v [0% (A4)] and C2h [O h (A4)].  
(2) The six-site framework groups C2~ [tr~ (A2), X(A4)] and Czh [trh (A2), X(A4)]. 
(3) The six-site framework groups Czv[ov(A6)] and C2h[trh(A6)]. In all three of 
these pairs of isopermutational framework groups the tro symmetry plane in the 
one with a CEv point group plays the same permutational role as the trh symmetry 
plane in the one with a Czh point group. 

The regular octahedron Oh[3C4(L2)] has two chiral ligand partitions (23) and 
(31 s) which lead to the chiral systems depicted in the first row of Fig. 4. 
Destruction of the C4 symmetry of Oh[3C4(L2)] to give the isopermutational 
framework group pair D3h[30% (L2)] and Dad[3tr d (L2)] leads to four new chiral 
ligand partitions which are depicted in the second row of Fig. 4 for the trigonal 
antiprism Dsa[3trd(L2)]. Note that the single (313) chiral ligand partition in the 
regular octahedron Oh[3C4(Z2)] is split into two distinct (313) ligand partitions 
in D3h [3O'v (/-,2)] o r  D3d [30"d (t2)]. The reason for this can be most easily visualized 
in the case of Daa[3o'd(L2)] which has two triangular faces of one type (which 
must be equilateral triangles because of the C3 axis) and six triangular faces of 
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Octahedron: Oh[ 3C4(L2)] 
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A/.Z 
Trlgonal prism D3h[ 3ev(L2)] or trlgonal ant|prism D3d[ 3ed(L2)] : addiHonal chiral llgand partiHons 

129 

A A B A 

A ~ B  A : ~ :  A A A ~ c  A ~ J  D 
C C 

A B A B 
(321 ) (42) (412) (313) 

Square bipyram|d D4h[C4(L2), 2C2(L2)] : ehiral llgand partitions not found in Oh[3C4(L2)] 

A B D 

A A A 

g E 

(321 ) (2212) (214) 

Fig. 4. Schematic drawings of the chiral ligand partitions of the octahedron (top row), trigonal 
antiprism (top and middle rows), and square bipyramid (top and bottom rows) 

a second type (which need only be isoceles). Thus in the regular octahedron 
Oh [3 C4(L2)] in which all eight triangular faces are equivalent equilateral triangles 
there is only one type of triangular face to accommodate the three equivalent 
ligands of the (313) ligand partition. However, in D3d[3o'a (L2)] the two different 
types of triangular faces for the three equivalent ligands of a (313) chiral ligand 
partition lead to two distinguishable (313) chiral ligand partitions. 

Further distortion of the isopermutational framework group pair D3h[3O-o(L2)] 
and D3a[3o-u(L2)] can occur by destruction of the horizontal symmetry plane 
(Oh) in 03h[3o%(L2)] or the permutationally equivalent inversion center (i) in 
D3d[3crd (L2)]. In either case the result is the same, namely the framework group 
C3~[3o-~ (Lz)] with a (3 2) site partition and no less than 12 distinguishable chiral 
ligand partitions. 

Distortion of the original octahedron Oh[3C4(L2)] by removal of its C3 symmetry 
immediately destroys its transitivity to give the square bipyramid 



130 R.B. King 

Onh[C4(Z2), 2Cz(L2)] with a (42) site partition. This distortion leads to three 
chiral ligand partitions not found in Oh[3C4(Z2)]; these are depicted in the third 
row of Fig. 4. Note that in the framework group D4h[f4(Z2), 2C2(L2)] the 
intransitivity implied by the (42) site partition means that ligand assignments in 
the two axial sites are independent of those in the four equatorial sites. Thus in 
all five chiral ligand partitions of D4h[C4(L2), 2C2(L2)], the ligand partition for 
the four equivalent equatorial sites is (212), namely the single chiral ligand 
partition of the polarized square C4~[2o-~(L2)] (see Sect. 5) which is the 
geometry of the equatorial ligand orbit. The difference between the different 
chiral representations of O4h[f4(Z2), 2Cz(Lz)] arises from which (if any) of the 
two axial ligands are equivalent to which of the (212) partitioned equatorial 
ligands. 

Further distortion of the square bipyramid D4h[f4(Z2), 2C2(L2)] can occur by 
processes of one of the following types: 

(1) Reduction of the symmetry of the equatorial square to give a rectangle (i.e., 
, C,qL ~1 D2h[CE(L2),trh(L4)], rhombus (i.e. DEh[C2(L2), C2(L2), 2t 2)J, or the non- 

planar four-site DEa "allene" configuration (i.e. Dza[C2(L2), 2era (L2)]). 
(2) Removal of the horizontal plane of symmetry (O'h) to make the two axial 
sites non-equivalent thereby giving the framework groups C4~ [C4(L2), 20-~ (L2)], 
C2~[C2(L2),X(L4)], and C2~[C2(L2),cr~(L2),o"v(Lz)] in which the equatorial 
ligands are arranged in a square, rectangle, and rhombus, respectively. 

These distortions (which are summarized in Fig. 3) lead to framework groups 
with rather long lists of chiral ligand partitions which will not be depicted in 
detail here but which can be derived by methods similar to those used for the 
more symmetrical sytems discussed earlier. 

The remaining transitive six-site framework group is the planar hexagon, which 
after polarization goes to C6~ [3cr~ (L2)]. This framework group is not a subgroup 
of the octahedron Oh[3C4(L2)] since in C6v[3Crv(L2)] the operations with a (6) 
cycle partition derive from a proper rotation axis C6 whereas in Oh[3C4(L2)] 
the operations with a (6) cycle partition derive from an improper rotation axis 
$6. The polarized planar hexagon has six chiral ligand partitions which correspond 
to the following chiral systems: 

A A A B A C 

A B A B A B C B 

B A C A A A A A A B 

A A C A D D 

(32 ) (412 ) (412) (321) (31 a) (221 ~) 

The intransitive framework group C3v[3tr~ (L2)] with a (3 2) site partition may be 
derived from C6o[3cro(L2)] by distortion of the C6 axis. This splits the six 
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equivalent sites in C6~ [3o-~ (L2)] into two orbits of three equivalent sites each in 
C3v[3Crv(L2)]. 

The remaining six-site achiral non-planar framework groups with distinctive 
symmetry (at least 6 symmetry operations in the point group) may be derived 
from five-site framework groups by addition of a unique sixth site. These include 
the following: 

(1) The pentagonal pyramid Cs~[Cs(L), 5o'~(L)] obtained by placing a unique 
apex above the planar regular pentagon DSh[5CE(L)]. 
(2) The centered trigonal bipyramid D3h[O(L), C3(L2), 3C2(L)] obtained by 
adding a unique central point to the trigonal bipyramid D3h[Ca(L2), 3C2(L)]. 
(3) The framework group Cav[C3(L3), 3Cry(L)] obtained by distortion of the 
centered trigonal bipyramid D3h[O(L), C3(L2), 3C2(L)] to remove the horizontal 
symmetry plane trh. The determination of the chiral ligand partitions of these 
six-site framework groups presents no new difficulties. 

8. Summary 

The characterization of polyhedral symmetry in the previous paper [18] is additive 
since higher symmetry leads to more symmetry operations (i.e. more terms in 
the cycle index polynomial of Eq. (1)). However, the characterization in the 
present paper of symmetry of polyhedra or their associated framework groups 
is subtractive since higher symmetry leads to fewer chiral ligand partitions. This 
relates to the following two alternative approaches to defining symmetry: 

(1) Framework Groups. Symmetry is defined in terms of the symmetry operations 
of the framework group [19] so that more symmetrical species have more 
symmetry operations. 
(2) Chiral Ligand Partitions. Symmetry is defined in terms of the ligand partitions 
needed to remove all improper rotations (including reflections and inversions) 
from the skeletal framework group thereby leading to a chiral species. More 
symmetrical skeletons require a less symmetrical ligand partition (i.e. that corres- 
ponding to a Young diagram of higher degree) to give chiral species. These two 
approaches to symmetry are complementary since they are effectively used to 
study different phenomena. 

The study of chirality by the methods outlined in this paper is useful for both 
qualitative and quantitative reasons. Qualitatively, the systematics of ligand 
partitions leading to chirality for a given skeleton (or framework group) is 
presented. Quantitatively, the underlying mathematics is presented for the 
determination of useful functions to estimate the magnitudes of pseudoscalar 
properties; the pseudoscalar polynomials of lowest degree discussed in this paper 
are the simplest examples of such chirality functions. Finally, the intimate 
examination of the properties of the framework groups, which is necessary to 
develop the chirality algebra in this paper, expands greatly our understanding 
of the relationships between the various framework groups beyond the pioneering 
work of Pople [19] in this area. 
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